Enhanced adsorptive removal of p-nitrophenol from water by aluminum metal-organic framework/reduced graphene oxide composite.

نویسندگان

  • Zhibin Wu
  • Xingzhong Yuan
  • Hua Zhong
  • Hou Wang
  • Guangming Zeng
  • Xiaohong Chen
  • Hui Wang
  • Lei Zhang
  • Jianguang Shao
چکیده

In this study, the composite of aluminum metal-organic framework MIL-68(Al) and reduced graphene oxide (MA/RG) was synthesized via a one-step solvothermal method, and their performances for p-nitrophenol (PNP) adsorption from aqueous solution were systematically investigated. The introduction of reduced graphene oxide (RG) into MIL-68(Al) (MA) significantly changes the morphologies of the MA and increases the surface area. The MA/RG-15% prepared at RG-to-MA mass ratio of 15% shows a PNP uptake rate 64% and 123% higher than MIL-68(Al) and reduced graphene oxide (RG), respectively. The hydrogen bond and π - π dispersion were considered to be the major driving force for the spontaneous and endothermic adsorption process for PNP removal. The adsorption kinetics, which was controlled by film-diffusion and intra-particle diffusion, was greatly influenced by solution pH, ionic strength, temperature and initial PNP concentration. The adsorption kinetics and isotherms can be well delineated using pseudo-second-order and Langmuir equations, respectively. The presence of phenol or isomeric nitrophenols in the solution had minimal influence on PNP adsorption by reusable MA/RG composite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REMOVAL OF ORGANIC DYES FROM CONTAMINATED WATER USING COFE2O4 /REDUCED GRAPHENE OXIDE NANOCOMPOSITE

Up to now, lots of materials such as active carbon, iron, manganese, zirconium, and metal oxides have been widely used for removal of dyes from contaminated water. Among these, ferrite nanoparticle is an interesting magnetic material due to its moderate saturation magnetization, excellent chemical stability and mechanical hardness. Graphene, a new class of 2D carbonaceous material with atom thi...

متن کامل

Adsorptive Removal of Cr(VI) and Cu(II) Ions from Water Solution using Graphene Oxide-Manganese Ferrite (GMF) Nanomaterials

Chromium (Cr) and copper (Cu) are heavy metals known for their dangerous effect towards human health and could enter into human body mainly through ingestion. Over the years, different treatment methods have been used to eliminate heavy metal from raw water source and these include (co)precipitation, coagulation/flocculation, adsorption and ion- exchange. Nonetheless, adsorption is the most pro...

متن کامل

Dye removal from water by zinc ferrite-graphene oxide nanocomposite

In this work, zinc ferrite magnetic and zinc ferrite-graphene oxide nanocomposite were synthesized through a facile hydrothermal method and dye removal capability as an adsorbent were studied. Fourier transform infrared spectroscopy FT-IR, X-ray diffraction XRD and scanning electron microscopy SEM were used to characterize the synthesized nanocomposite. The UV-Vis results showed that the additi...

متن کامل

Synthesis of Magnetic Graphene Oxide ‎Nanocomposite for Adsorption Removal of ‎Reactive Red 195: Modelling and ‎Optimizing via Central Composite Design

   In this work, magnetic graphene oxide (MGO) was prepared by in situ synthesis of magnetite nanoparticles in the presence of graphene oxide (GO). The prepared nanocomposite was characterized by applying scanning electron microscopy (SEM), X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). MGO was applied as an ...

متن کامل

Adsorptive interaction of bisphenol A with mesoporous titanosilicate/reduced graphene oxide nanocomposite materials: FT-IR and Raman analyses

Nanocomposite materials containing graphene oxide have attracted tremendous interest as catalysts and adsorbents for water purification. In this study, mesoporous titanosilicate/reduced graphene oxide composite materials with different Ti contents were employed as adsorbents for removing bisphenol A (BPA) from water systems. The adsorptive interaction between BPA and adsorption sites on the com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scientific reports

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016